86 research outputs found

    Tamari Lattices and the symmetric Thompson monoid

    Full text link
    We investigate the connection between Tamari lattices and the Thompson group F, summarized in the fact that F is a group of fractions for a certain monoid F+sym whose Cayley graph includes all Tamari lattices. Under this correspondence, the Tamari lattice operations are the counterparts of the least common multiple and greatest common divisor operations in F+sym. As an application, we show that, for every n, there exists a length l chain in the nth Tamari lattice whose endpoints are at distance at most 12l/n.Comment: 35page

    Garside and quadratic normalisation: a survey

    Full text link
    Starting from the seminal example of the greedy normal norm in braid monoids, we analyse the mechanism of the normal form in a Garside monoid and explain how it extends to the more general framework of Garside families. Extending the viewpoint even more, we then consider general quadratic normalisation procedures and characterise Garside normalisation among them.Comment: 30 page

    Finite Thurston type orderings on dual braid monoids

    Full text link
    For a finite Thurston type ordering < of the braid group B_{n}, we introduce a new normal form of a dual positive braid which we call the C-normal form. This normal form extends Fromentin's rotating normal form and the author's C-normal form of positive braids. Using the C-normal form, we give a combinatorial description of the restriction of the ordering < to the dual braid monoids B_{n}^{+*}. We prove that the restriction to the dual positive monoid (B_{n}^{+*},<) is a well-ordered set of order type \omega^{\omega^{n-2}}.Comment: 28pages, 5 figure

    Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue

    Full text link
    This article surveys many standard results about the braid group with emphasis on simplifying the usual algebraic proofs. We use van der Waerden's trick to illuminate the Artin-Magnus proof of the classic presentation of the algebraic mapping-class group of a punctured disc. We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy, and, hence, recover the Dehornoy right-ordering of the braid group. We then turn to the Birman-Hilden theorem concerning braid-group actions on free products of cyclic groups, and the consequences derived by Perron-Vannier, and the connections with the Wada representations. We recall the very simple Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain technique. Studying ends of free groups permits a deeper understanding of the braid group; this gives us a generalization of the Birman-Hilden theorem. Studying Jordan curves in the punctured disc permits a still deeper understanding of the braid group; this gave Larue, in his PhD thesis, correspondingly deeper results, and, in an appendix, we recall the essence of Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure

    Abelian subgroups of Garside groups

    Full text link
    In this paper, we show that for every abelian subgroup HH of a Garside group, some conjugate g1Hgg^{-1}Hg consists of ultra summit elements and the centralizer of HH is a finite index subgroup of the normalizer of HH. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets in Garside groups", arXiv:math.GT/060258

    Right-veering diffeomorphisms of compact surfaces with boundary II

    Full text link
    We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [HKM2]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group B_n on n strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Ro1,Ro2].Comment: 25 pages, 5 figure

    On finite Thurston type orderings of braid groups

    Full text link
    We prove that for any finite Thurston-type ordering <T<_{T} on the braid group\ BnB_{n}, the restriction to the positive braid monoid (Bn+,<T)(B_{n}^{+},<_{T}) is a\ well-ordered set of order type ωωn2\omega^{\omega^{n-2}}. The proof uses a combi\ natorial description of the ordering <T<_{T}. Our combinatorial description is \ based on a new normal form for positive braids which we call the \C-normal fo\ rm. It can be seen as a generalization of Burckel's normal form and Dehornoy's \ Φ\Phi-normal form (alternating normal form).Comment: 25 pages, 2 figures; proof of Theorem 1 is correcte

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard

    Describing semigroups with defining relations of the form xy=yz xy and yx=zy and connections with knot theory

    Get PDF
    We introduce a knot semigroup as a cancellative semigroup whose defining relations are produced from crossings on a knot diagram in a way similar to the Wirtinger presentation of the knot group; to be more precise, a knot semigroup as we define it is closely related to such tools of knot theory as the twofold branched cyclic cover space of a knot and the involutory quandle of a knot. We describe knot semigroups of several standard classes of knot diagrams, including torus knots and torus links T(2, n) and twist knots. The description includes a solution of the word problem. To produce this description, we introduce alternating sum semigroups as certain naturally defined factor semigroups of free semigroups over cyclic groups. We formulate several conjectures for future research

    Factoring Products of Braids via Garside Normal Form

    Get PDF
    Braid groups are infinite non-abelian groups naturally arising from geometric braids. For two decades they have been proposed for cryptographic use. In braid group cryptography public braids often contain secret braids as factors and it is hoped that rewriting the product of braid words hides individual factors. We provide experimental evidence that this is in general not the case and argue that under certain conditions parts of the Garside normal form of factors can be found in the Garside normal form of their product. This observation can be exploited to decompose products of braids of the form ABC when only B is known. Our decomposition algorithm yields a universal forgery attack on WalnutDSA™, which is one of the 20 proposed signature schemes that are being considered by NIST for standardization of quantum-resistant public-key cryptography. Our attack on WalnutDSA™ can universally forge signatures within seconds for both the 128-bit and 256-bit security level, given one random message-signature pair. The attack worked on 99.8% and 100% of signatures for the 128-bit and 256-bit security levels in our experiments. Furthermore, we show that the decomposition algorithm can be used to solve instances of the conjugacy search problem and decomposition search problem in braid groups. These problems are at the heart of other cryptographic schemes based on braid groups.SCOPUS: cp.kinfo:eu-repo/semantics/published22nd IACR International Conference on Practice and Theory of Public-Key Cryptography, PKC 2019; Beijing; China; 14 April 2019 through 17 April 2019ISBN: 978-303017258-9Volume Editors: Sako K.Lin D.Publisher: Springer Verla
    corecore